US009229700B2

a2z United States Patent (10) Patent No.: US 9,229,700 B2
Subramanya et al. (45) Date of Patent: Jan. 5, 2016
(54) METHODS AND SYSTEMS FOR DYNAMIC 7,565,519 Bl 7/2009 Kumar et al.
UPGRADE OF AN ACCESS MANAGER 7,721,258 B2 5/2010 Chamberlain et al.
8,041,820 B2 10/2011 Ogget al.
. . . 2004/0168165 Al* 82004 Kokkinen 717/168
(71) Applicant: Oracle International Corporation, 2006/0048130 Al* 3/2006 Napieretal. 717/168
Redwood Shores, CA (US) .
(Continued)
(72) Inventors: Ramya Kukkehali Subramanya,
Bangalore (IN); Madhu Martin, FOREIGN PATENT DOCUMENTS
Bangalore (IN) KR 2007-109149 A 11/2007
(73) Assignee: Oracle International Corporation, OTHER PUBLICATIONS
Redwood Shores
Chandiramani et al, “Saving time and labor on Oracle Patching with
(*) Notice: Subject to any disclaimer, the term of this Enterprise Manager Provisioning Pack”, Jan. 2008, pp. 1-13
patent is extended or adjusted under 35 <PatchingEMPO8.pdf >.*
U.S.C. 154(b) by 273 days. (Continued)
(21) Appl. No.: 13/749,509
) Primary Examiner — Tuan Vu
(22) Filed: Jan. 24,2013 (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP
(65) Prior Publication Data
US 2014/0208304 A1l Jul. 24,2014 (57) ABSTRACT
51) Int.CL ethods and systems are described for upgrading an access
(51) Methods and sy described for upgrading
GOGF 9/44 (2006.01) manager framework. In response to an upgrade request from
GOGF 9/445 (2006.01) a client, current and new versions of the access manager
(52) US.CL framework are identified. Upon successful identification of
CPC ovvoeeeeeeeeee e GOGF 8/65 (2013.01) the current version, one or more supported upgrade paths are
(58) Field of Classification Search determined for the upgrade process. An appropriate upgrade
USPC o 717/170. 176: 726/15. 25: 709/203 path from the current version to the new version is determined
709/217. 222 2’23. 3’70 /252 ’2 55.’ 707 /621f upon successful identification of the current and/or new ver-
719/’31 1: ’455/:111 435.1’. 713’/100 156’ sion of the access manager framework. In response to deter-
IPC ... GOGF 8/65,8/68, 11/302, 11/3051; Y105~ ination of the appropriate upgrade path, a version specific
707 /99939’. H021L 67 /12’5. HO 4“; 4/001 program upgrade component and a version specific upgrade
See application file for complete search history. program are associated with the determined upgrade path. In
addition, a set of information may be extracted from the
(56) References Cited access manager framework, transformed, and imported to the

U.S. PATENT DOCUMENTS

6,385,770 Bl 5/2002 Sinander
6,389,589 B1* 5/2002 Mishraetal. 717/170
6,862,616 B1* 3/2005 Tompkins 709/223

upgraded access manager framework based at least in part
upon the determined version specific upgrade program and
the version specific program upgrade component.

18 Claims, 7 Drawing Sheets

Receive an upgrade request from a user

502

i

Identify the current version of an access manager

1)

506

o
s
~

3

Identify a new version of the access manager

s

! Determine a version speclfic upgrade program

Deterrmine an upgrade path form the current version to the s10
new version of the access manager

Determine a versi

the upgrade path

S

e TRe VarsIon SpecIc Upgrade SorWare Componant an
the version specific upgrade program with the determinec!
upgrade path

i”\s:n
i

version specific upg

Load the version specific upgrade software component and the | 516
fi rade program with the upgrade path ’/\,

Extract Policy data and configuration information from the
current version of the access manager

[Transform the Palicy data and configuration information l’\ 520

1

Import the transformed Poficy data and configuration
information to the new version of the access manager

US 9,229,700 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0064582 Al* 3/2006 Tealetal. 713/156

2008/0178173 Al* 7/2008 Srirametal. 717/176
2010/0257539 Al* 10/2010 Narayananetal. ... 719/311
2011/0182341 Al 7/2011 Mishra et al.

2011/0225575 Al* 9/2011 Ningombametal. 717/170

OTHER PUBLICATIONS

“Installing the Tivoli Management Framework integration pack-
ages,” Tivoli, http://publib.boulder.ibm.com/infocenter/tivihelp/

v2rl/index jsp?topic=%2Fcom.ibm.itamos.doc%2Famos60__in-
stall34.htm, retrieved Mar. 14, 2012, 6 pages.

“Upgrading from Cisco access manager to Cisco UGM 2.1,” Chapter
4, Cisco Universal Gateway Manager Installation, Upgrade, and
Troubleshooting Guide, Version 2.1, http://www.cisco.com/
univercd/ce/td/doc/product/rtrmgmt/ugm/ugm?2__1/install/u2l__
cam.pdf, 6 pages.

“Upgrade from Novell iChain to Novell Access Manager,” Novell,
Sep. 2006, http://www.netiq.com/products/access-manager/docs/
ichainto__am3_ upgradedoc.pdf, 6 pages.

“Access Manager-Quest,” Quest Software, http://www.quest.com/
access-manager/, Retrieved Mar. 14, 2012, 7 pages.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,229,700 B2

100
g 112
Resources
106 108 T
Client Agent Web Server
(/)102 104

Access :
Manager i Database

Server :

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 7 US 9,229,700 B2

202 2 5 200

Upgrade Framework

k4

204 206
’ iy
Source Environment Destination Environment
208 212

N

el

Authentication
Policy

Authentication
Policy

T T

el

Authorization
Policy

Authorization
Policy

210 214

o Transtormed
Configuration

Configuration
Information

Information

FIG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,229,700 B2
300
302
Upgrade Framework Ci?“
Export Utility

3062 310 308
Version Version
Specific T Upgrade Path L Specific
binary File |~ 1 3 Upgrade
1 Plugin 1
306 () 310 e") 308 {9
Versi‘?n Version
b.S hect FIC| #777"| Upgrade Path {7 T, | Specific
inary File 5 Upgrade
2 Plugin 2

306 310 308
Version | ... Version
Specific | 7 "] Upgrade Path |« 1 specific
binary File 3 Upgrade
3 Plugin 3

312
q:w-..?ﬁ
Import Utility

U.S. Patent

Jan. 5, 2016

Sheet 4 of 7

402

’

t .
1% Version

e

kA

d .
3" Version

k2

d .
2" Version

404

P

US 9,229,700 B2

400

408

(,,)

th .
47 Version

FIG. 4

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,229,700 B2

500
Receive an upgrade request from a user /\/502
Identify the current version of an access manager /\504
Determine a version specific upgrade program /’\/506
Identify a new version of the access manager /\/508

v

Determine an upgrade path form the current version to the 510
new version of the access manager f\\,

v

Determine a version specific upgrade software component for
the upgrade path /\/512

Associate the version specitic upgrade software component and
the version specific upgrade program with the determined \514
upgrade path

Load the version specific upgrade software component and the 516
version specific upgrade program with the upgrade path /\/

v

Extract Policy data and configuration information from the 518
current version of the access manager /\\,

¥

Transform the Policy data and configuration information ”\4520

¥

Import the transformed Policy data and configuration f\522
information to the new version of the access manager

FIG. 5

U.S. Patent

Jan. 5, 2016

602

Sheet 6 of 7

604

-

{

05 o

612

618

Network
610

Database

FIG. 6

US 9,229,700 B2

%600

[e

616

U.S. Patent Jan. 5,2016 Sheet 7 of 7 US 9,229,700 B2

700 710
Ay
Computer
Readable Storage
702 704 706 708 Megd'a
Computer
CPU(S) Input Output Storage Readable Storage
Device(s) Device(s) Device(s) Media Reader
R
712
724
Communications Processing Working
System Acceleration Memory
Operating
714 716
et System
720
Other Code
Fa (Programs)
722
718

FIG. 7

US 9,229,700 B2

1

METHODS AND SYSTEMS FOR DYNAMIC
UPGRADE OF AN ACCESS MANAGER

CROSS-REFERENCES TO RELATED
APPLICATIONS

NOT APPLICABLE
BACKGROUND

1. Field of Art

The present disclosure relates generally to the field of
computer resource management. Specifically presented are
methods and systems for upgrading frameworks used for
computer resource access control and user identity adminis-
tration.

2. Description of Related Art

Sharing and distribution of information has become the
main focus in the computer age. Modern sharing and distri-
bution methods and systems provide resource access regula-
tions. This allows for increased security, reduced operational
costs, and improved usability of shared and/or distributed
resources.

Companies and agencies providing information would
benefit from resource access regulations provided by sharing
and distribution methods and systems. For example, these
organizations may regulate their employees’ access to vari-
ous corporate data to control who can access what resource.
For instance, an employee portal system may be protected
with a username and password, but for a more sensitive HR
self-service application that deals with sensitive data, users
may be required to be authenticated using an RSA Secur]D®
token, thus providing a higher level of security to more sen-
sitive resources or applications. Therefore, access manage-
ment solutions have been developed to implement regulations
for accessing resources for resource providers.

Access management solutions may provide centralized
authentication, authorization, and auditing to enable single
sign-on and secure access control using enterprise resources.
For example, Oracle Access Manager, a product of Oracle
International Corporation of Redwood Shores in California,
is configured to support Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM), and Collabora-
tion suite applications.

Generally, access managers are not designed to be easily
upgraded. An upgrade process of an access manager involves
extensive and complex tasks to be performed by users, for
example, system administrators and operators. For instance,
upgrading an access manager framework may include as
many as 25 manual steps to be performed by a user in order to
upgrade the access manager framework from one version to a
subsequent version of the access manager framework. A sim-
plified upgrade process of an access manager framework can
lead to an optimized and hassle free process while improving
the performance of the access manager.

There exists a need in the art for better upgrading tech-
niques using an upgrade framework to provide for easier
upgrade process of the access manager and regulate upgrad-
ing process within multiple versions. This way, upgrading an
access manager becomes a streamlined process requiring
minimal, if any, user intervention that can used to meet the
widely growing demand of simplified upgrading and man-
agement of access managers especially in today’s growing
complex enterprise environments.

BRIEF SUMMARY

Embodiments in accordance with the present disclosure
relate to upgrading a framework, for example an access man-

10

15

20

25

35

40

45

50

55

60

65

2

ager framework. An upgrading process for an access manager
framework generally can be very complex and requires direct
supervision and involvement of the administrator of the
access manager framework. For example, the system admin-
istrator has to perform tens of manual steps to ensure comple-
tion of the upgrade process for an access manager framework.

Some embodiments use a plurality of version specific
upgrade programs to provide upgrade support for multiple
older versions of an access manager framework. For example,
a version specific upgrade program may be represented as a
binary file in Java® environment. In an embodiment, the
binary file may be loaded via a custom class loader for an
upgrade process of each specific version.

Some embodiments in accordance with the present disclo-
sure relate to a method for upgrading an access manager
framework using an upgrade framework. The method
includes extracting a set of policy data from a first version of
an access manager framework, the set of policy data used for
protecting a resource by the access manager framework,
extracting a set of configuration information from the first
version of the access manager framework, the set of configu-
ration information used for configuring functionality of the
access manager framework, transforming the set of extracted
policy data and the set of extracted configuration information,
the transformed set of policy data and the set of transformed
configuration information being compatible with a second
version of the access manager framework, importing the set
oftransformed policy data to the second version of the access
manager framework, and importing the set of transformed
configuration information to the second version of the access
manager framework.

The method further includes determining one or more
upgrade paths from the first version of the access manager to
the second version of the access manager based at least in part
upon identification of at least one of the first version and the
second version of the access manager framework, wherein the
one or more upgrade paths are determined dynamically upon
receiving an upgrade request from a user, and wherein an
upgrade path is identified from the one or more determined
upgrade paths using at least one parameter.

Other embodiments in accordance with the present disclo-
sure relate to a method for upgrading an access manager
framework using an upgrade framework. The method
includes extracting a set of information from the access man-
ager framework, transforming the extracted set of informa-
tion, where the transformed set of information is configured
to be compatible with an upgraded access manager frame-
work, and importing the transformed set of information to the
upgraded access manager framework.

The method further includes identifying a first version of
an access manager framework, determining a version specific
upgrade program for the identified first version of the access
manager framework, identifying a second version associated
with the upgraded access manager framework, and determin-
ing possible upgrade paths from the first of the access man-
ager framework to the second version of the upgraded access
manager framework.

The method further includes determining a version specific
upgrade program component for each determined possible
upgrade path, and associating the determined version specific
upgrade program component and the version specific upgrade
program with each possible upgrade path.

Yet other embodiments relate to systems and non-transi-
tory machine-readable storage media that employ or store
instructions for the methods as described above.

A further understanding of the nature and the advantages of
the embodiments disclosed and suggested herein may be

US 9,229,700 B2

3

realized by reference to the remaining portions of the speci-
fication and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
invention will be described with reference to the drawings, in
which:

FIG. 1 illustrates components of an exemplary access man-
ager framework in accordance with an embodiment.

FIG. 2 illustrates components of an exemplary system in
accordance with an embodiment.

FIG. 3 illustrates components of an exemplary upgrade
framework in accordance with an embodiment.

FIG. 4 illustrates exemplary upgrade paths in accordance
with an embodiment.

FIG. 5 illustrates operations performed in processing an
upgrade request for an access manager in accordance with an
embodiment.

FIG. 6 illustrates components of a computer network that
can be used in accordance with one embodiment.

FIG. 7 illustrates components of a computerized device
that can be used in accordance with one embodiment.

The figures will be used below to illustrate different
embodiments in accordance with the invention. The figures
are specific examples of embodiments and should not be
interpreted as limiting embodiments, but rather exemplary
forms and procedures.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide
a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without some of these specific
details.

Generally described are methods and systems for upgrad-
ing an access manager framework provided for protecting
resources using an upgrade framework. An upgrade process
may include minimal user intervention, if any, and usually
starts upon receiving a user request for an upgrade. The
upgrade framework provides multiple version specific pro-
grams so that an appropriate version specific upgrade pro-
gram can be selected for the upgrade process based at least in
part upon the current version and/or destination version of an
access manager framework.

One aspect offers to provide a version specific upgrade
plugin in addition to the version specific upgrade program so
that the upgrade framework can extract a set of information
from the current version of the access manager framework,
transform the extracted set of information so that it may be
compatible with the destination version of the upgraded
access manager framework, and import the set of transformed
set of information to the upgraded access manager frame-
work.

FIG. 1 illustrates an exemplary system for an access man-
agement operable to protect resources in accordance with an
embodiment. Access manager server 102 may be a server that
enforces access policies on web and non-web resources,
which may specify who can or cannot access a particular
resource.

Access policies may restrict access to particular resources
by user, static or dynamic group memberships, time of the day
or week, IP (Internet Protocol) addresses, etc. The access
manager server may provide dynamic policy evaluation as
clients access resources and provide authentication and

10

15

20

25

30

35

40

45

50

55

60

65

4

authorization services. Access manager server 102 is con-
nected to one or more databases 104 to utilize information
stored in the one or more databases 104 while validating
credential information.

Database 104 may store policy data related to configura-
tion and workflow related data. For example, database 104
may include data regarding security component orchestra-
tion. Database 104 may also contain user, group, and organi-
zation data to facilitate access policy management that may
be performed by the access management system components,
for example access manager server 102.

Agent 108 is a policy enforcement agent that acts as a filter
for resource requests. Agent 108 may intercept resource
requests and apply access policies to determine whether the
requested resources are protected by the access management
system. If so, the resource request is forwarded to access
management server 102 to determine whether the client
requesting the protected resource may access the protected
resource. For example, Webgate, an out of the box solution
developed by Oracle International Corporation may be used
as an agent so that it can filter the resource requests. It should
be noted that agent 108 may be a hardware structure or a
combination of hardware and software implementations, in
accordance with some embodiments.

Agent 108 receives access requests from client 106, which
may be an end-user, (e.g., an employee, customer, supplier,
etc.), a system, or a software program requesting access to a
resource. If agent 108 determines that the requested resource
is not a protected resource or the client is authorized to access
the protected resource, the client may be connected to a
server, for example web server 110, to receive resource 112.
Web server 110 may present information requested by pro-
viding web based (HTTP (Hypertext Transfer Protocol)) con-
tent to the client 106. In some embodiments resource 112 may
be presented as HTML (HyperText Markup Language) so
that it may be rendered in the client’s browser.

Access managers usually have multiple components for
authentication and/or authorization processes. For example,
an access manager may include one or more authentication
schemes. Authentication schemes protect specific resources
using one or more access policies and may include details
about a credential collection mechanism and type of creden-
tial collector used to collect credentials. For example, creden-
tial collection may occur using an HT'TP(S) transport channel
that is handling HTTP(S) request from a remote client.

In an embodiment, the authentication scheme may identify
aredirect URL (Uniform Resource Locator), which is used to
notify the client of the success or failure of the authentication
and/or authorization processes. In addition, authentication
schemes may identify an authentication level indicating the
trust level to protect transport of credentials from the client. In
some embodiments, the authentication level maybe an integer
assigned from 0 to 99. For example, an LDAP (Lightweight
Directory Access Protocol) scheme may be at authentication
level 2 with an LDAP authentication module to protect Man-
ager-related resources, e.g., URLs, based on a form challenge
method. In the form challenge method, an HTML form with
one or more text input fields may be used to gather credential
information. In some embodiments, the form-based chal-
lenge may collect credentials such as username and pass-
word, social security number, date of birth, one time pass-
word, or a combination of other common parameters.

As illustrated in FIG. 2, an upgrade framework may be
used to process an upgrade request from a user. For example,
upgrade framework 202 may be used to upgrade a current
version of an access manager from source environment 204 to
destination environment 206, which may include an upgraded

US 9,229,700 B2

5

version of the access manager. Upgrade framework 202 may
work with multiple versions of access managers so that a need
for multiple upgrade tools, where each upgrade tool only
serving a single version of an access manager, is eliminated.
The multi version support of upgrade framework 202 allows
for seamless upgrade process performed for multiple older
versions of an access manager.

In an upgrade process, there are multiple components
within an access manager. For example, policies governing
access to resources protected by an access manager may be
upgraded in an upgrade process. Policy data 208 may include
authentication policies and authorization policies. The
authentication policies are used to determine the identity of'a
client requesting access to protected resources. Created
authentication policies may request authentication creden-
tials from the client to determine the claimed identity of the
client. For example, a client may be asked for authentication
credentials in form of a challenge to authenticate the client.
This way, the authentication policies specify the authentica-
tion methodology to be used for authentication the client
requesting access for a protected resource. In an embodiment,
a client may be granted or denied access to a protected
resource based on authentication policy evaluations.

In addition to authentication policies, policy data 208 also
include authorization policies. The authorization policies are
used to determine whether a client has a right to access a
requested resource. Authorization policies may be created to
specify access conditions for a client requesting access to a
protected resource. These conditions are rules (i.e. con-
straints) to grant or deny access to a protected resource. For
example, authorization constraints may be evaluated to allow
or deny access based on the outcome of the authorization
policy evaluation of authorization credentials provided by a
client. In an embodiment, providing insufficient authoriza-
tion credentials to evaluate the authorization policy may
result in automatic denial of a request to a protected resource.
For example, insufficient data that fails to verify membership
of a client to a specific group may cause automatic denial of
the access request. In an embodiment, policy data 208 may be
stored in an LDAP directory.

Another component of an access manager that may be
processed during an upgrade of the access manager is con-
figuration information 210. Access managers may include
configuration information 210 to specifically govern appear-
ance and functionality of the access manager. For example,
configuration information 210 may disable a routine IP col-
lection operation identifying an IP address of a client request-
ing access for a protected resource. In an embodiment, con-
figuration information 210 may be stored in an LDAP
directory.

During the upgrade process, policy data 208 and configu-
ration information 210 may be extracted from source envi-
ronment 204 to be used in destination environment 206. Gen-
erally, access managers are not designed to be upgraded and
do not include handles to fetch policy data 208 and configu-
ration information 210. Therefore, an export utility, as shown
in FIG. 3, is provided to extract policy data 208 and configu-
ration information 210 from the current version of the access
manager. In an embodiment, extracting information includes
determining which directories include information to be
extracted. In another embodiment, policy data and/or con-
figuration information may be written to a file for extraction.
For example, if extracted data is exported from an LDAP
directory, the extracted data may be written to an LDIF
(Lightweight Directory Interchange Format) file. The LDIF

10

15

20

25

30

35

40

45

50

55

60

65

6

file is generally may be used for synchronization and data
transfer between LDAP servers with a shared LDAP direc-
tory.

Consequently, extracted policy data 208 and configuration
information 210 may be transformed to make the extracted
data compatible with the destination environment. For
example, an access policy having four attributes in a source
environment may be extracted and transformed using trans-
formation rules to be compatible with a destination environ-
ment in which the same access policy has five attributes.

One or more transformation rules may be used to transform
policy data 208 and configuration information 210 to trans-
formed policy data 212 and transformed configuration infor-
mation 214, in accordance with an embodiment. Each trans-
formation rule can convert existing attribute values of
existing logical object and particular system settings to a
specified value defined within the transformation rule. For
example, a number of password policies having particular
number of allowed login attempts in a source environment
may be extracted and transformed using a transformation rule
to be compatible with the increased or decreased number of
allowed login attempts in a destination environment.

In some embodiments, transformed policy data 212 and
transformed configuration information 214 are imported to
destination environment 206. In an embodiment, importing
the transformed information includes determining specific
directories in which the transformed information to be
imported in. In another embodiment, transformed policy data
212 and/or configuration information 214 are written to a file
for importing purpose. For example, if transformed data is
imported to an LDAP directory using an LDIF file, the LDIF
file may be opened so that the transformed data from the
opened LDIF file may be extracted from the LDIF file in a
useable format for destination environment 206.

FIG. 3 illustrates components of an exemplary upgrade
framework in accordance with an embodiment. Upgrade
framework 302 may include multiple components, for
example export utility 304 to export policy data and configu-
ration information from an access manager in a source envi-
ronment. In order for upgrade framework 302 to be an all-in-
one solution for upgrading multiple previous version of an
access manager to the latest version of the access manager,
export utility 304 may include multiple version specific
upgrade programs, each of which may be dedicated to work
with an older version of an access manager for the upgrading
purpose.

Having multiple version specific upgrade programs allows
for seamless upgrade process for multiple older versions ofan
access manager. In some embodiments, the version specific
upgrade program may be an object code (i.e. a binary file),
which is compiled from a source code, including a sequence
of instructions in a computer language. For example, a binary
file may be in Java® programming language, where it may be
called a class file having .class extension. In an embodiment,
multiple version specific binary files may be included in
export utility 304, where each version specific binary files
306 corresponds to one of the older versions of an access
manager. In this type of implementation, version specific
binary files 306 may be used to fetch policy data and configu-
ration information for multiple older version of an access
manager, in accordance with some embodiments.

Upgrade framework 302 may include one or more version
specific upgrade program components (i.e., upgrade plugins),
in accordance with some embodiments. Version specific
upgrade plugins 308 may only communicate with specific
upgrade API, for example Java® API, in accordance with
some embodiments. Version specific plugins 308 allow for

US 9,229,700 B2

7

extending the upgrade functionality by extracting policy data
and configuration information to be transformed and
imported to a destination environment. In an embodiment,
upgrade plugins may be re-used in other upgrade processes as
the upgrade plugins are generally modular and may be devel-
oped by a user or any other third-party developer. In an
embodiment, version specific upgrade plugin 308 may be
bundled with version specific binary file 306 in order to
process an upgrade request received from a user.

Each bundled upgrade plugin 308 and version specific
binary file 306 may be associated with a supported upgrade
path 310, in accordance with some embodiment. The asso-
ciation of each supported upgrade path 310 with the bundled
upgrade plugin 308 with version specific binary file 306 may
provide for an upgrade solution supporting multiple older
version of an access manager. This way, appropriate upgrade
plugin 308 with version specific binary file 306 may be deter-
mined upon identification of an initial version of an access to
be upgraded which indicates an appropriate upgrade path 310
to be used in an upgrade process.

In order for an upgrade framework to dynamically upgrade
an access manager, possible upgrade paths may be deter-
mined at run-time for a current version of an access manager
found in a source environment. In an embodiment, direct
and/or indirect upgrade paths may be supported based on
determination of an initial version of an access manager. As
shown in FIG. 4, there may be any combination of possible
upgrade paths available for upgrading an access manager
with a particular initial version. For example, a direct upgrade
path may not be available for 1* version 402 of an access
manager to 47 version 408 (i.e. the latest version) of an access
manager. In another example as illustrated in FIG. 4, 2"¢
version 404 of an access manager may have both direct and
indirect upgrade paths to the latest version of the access
manager. In an embodiment, a particular upgrade path for a
determined version of an access manager may be from a
plurality of possible upgrade paths based on one or more
parameters, rules, or criteria. For example, parameters con-
sidered may include faster execution of the upgrade process,
minimal system resource usage, and increased reliability.

In order to start extraction process of policy data and con-
figuration information from a current version of an access
manager, determined version specific binary files 306 and
version specific upgrade plugins 308 may be loaded in a
memory, in accordance with an embodiment. For example, a
custom Java® class loader may be used to load the deter-
mined version specific binary files 306 and version specific
upgrade plugins 308 in memory. Once the determined infor-
mation is loaded in a memory, the upgrade framework may
export relevant policy data and configuration information to
process the upgrade request.

FIG. 5 is a flowchart 500 of steps performed for processing
an upgrade request of an access manager from a user, in
accordance with embodiments of the present invention. Flow-
chart 500 includes processes of the present invention which,
in one embodiment, are carried out by processors and elec-
trical components under the control of computer readable and
computer executable instructions. Although specific steps are
disclosed in flowchart 500, such steps are exemplary. That is,
the present invention is well suited to performing various
other steps or variations of the steps recited in the figure.
Within the present embodiment, it should be appreciated that
the steps of flowchart 500 may be performed by software, by
firmware, by hardware or by any combination of software,
firmware and hardware.

In operation 502 of process 500, a request to upgrade an
access manager is received by an upgrade framework from a

10

15

20

25

30

35

40

45

50

55

60

65

8

user, e.g., an access manager system administrator or a devel-
oper, in an embodiment. It is noted that the request can be
received by an upgrade framework, e.g., upgrade framework
202 of FIG. 2, where the request may be auto generated from
the access manager framework based on one or more rules or
criteria, for example based on detecting an availability of a
newer version of an access manager.

In operation 504 of process 500, the current version of an
access manager may be dynamically identified using an
export utility, e.g., export utility 304 of FIG. 3. In Operation
506 of process 500, an appropriate version specific upgrade
program, e.g., version specific binary file 308 of FIG. 3 may
be determined to export policy data, e.g., policy data 208 of
FIG. 2, and configuration information, e.g., configuration
information 210 of FIG. 2, from a source environment, e.g.,
source environment 204 of FIG. 2.

In operation 508 of process 500, a destination version of an
upgraded access manager may be identified using an export
utility, e.g., export utility 304 of FIG. 3. In operation 510 of
process 500, one or more possible upgrade paths, e.g.,
upgrade paths 310 of FIG. 3, may be determined using the
identified current version of the access manager and/or the
destination version of the upgraded access manager frame-
work, in accordance with an embodiment.

In operation 512 of process 500, a version specific upgrade
software component, e.g., version specific upgrade plugin
308 of FIG. 3, may be determined so that the upgrade frame-
work, e.g., upgrade framework 302 of FIG. 3, can export
policy data, e.g., policy data 208 of FIG. 2, and configuration
information, e.g., configuration information 210 of FIG. 2,
from a source environment, e.g., source environment 204 of
FIG. 2.

In operation 514 of process 500, the version specific
upgrade program component, e.g., version specific upgrade
plugin 308 of FIG. 3, and the version specific upgrade pro-
gram, e.g., version specific binary file 308 of FIG. 3, are
associated with each of the supported upgrade paths, e.g.,
upgrade paths 310 of FIG. 3

In operation 516 of process 500, the appropriate version
specific upgrade program component and version specific
upgrade program may be loaded to a memory using a custom
Java® class loader, in accordance with some embodiments.
This way, the upgrade framework may continue the upgrade
process by extracting relevant information from the source
environment, e.g., source environment 204 of FIG. 2.

In operation 518 of process 500, relevant policy data, e.g.,
policy data 208 of FIG. 2, and configuration information, e.g.,
configuration information 210 of FIG. 2, may be extracted
from the source environment, e.g., source environment 204 of
FIG. 2. In some embodiments, the extraction process may
include writing relevant information to a file, for example
LDIF file, which may be used for synchronization and data
transfer between LDAP servers with a shared LDAP direc-
tory.

In operation 520 of process 500, extracted policy data, e.g.,
policy data 208 of FIG. 2, and configuration information, e.g.,
configuration information 210 of FIG. 2, may be transformed
so that the transformed information may be compatible with
a destination version of an access manager found in a desti-
nation environment, e.g., destination environment 206 of
FIG. 2. In an embodiment, one or more transformation rules
may be applied to transform the extracted information.

In operation 522 of process 500, information may be
imported to a destination environment, e.g., source environ-
ment 206 of FIG. 2, containing the destination version of the
access manager using an import utility, e.g., import utility 312
of FIG. 3. In some embodiments, importing process may

US 9,229,700 B2

9

include opening and extracting transformed information from
an LDIF file so that the transformed policy data, e.g., policy
data 212 of FIG. 2, and configuration information, e.g., con-
figuration information 214 of FIG. 2, may be presented in a
useable format for a destination environment, e.g., destina-
tion environment 206 of FIG. 2.

FIG. 6 is a block diagram illustrating components of an
exemplary operating environment in which various embodi-
ments of the present invention may be implemented. The
system 600 can include one or more user computers, comput-
ing devices, or processing devices 612, 614, 616, 618, which
can be used to operate a client, such as a dedicated applica-
tion, web browser, etc. The user computers 612, 614, 616, 618
can be general purpose personal computers (including,
merely by way of example, personal computers and/or laptop
computers running a standard operating system), cell phones
or PDAs (running mobile software and being Internet, e-mail,
SMS, Blackberry, or other communication protocol enabled),
and/or workstation computers running any of a variety of
commercially-available UNIX or UNIX-like operating sys-
tems (including without limitation, the variety of GNU/Linux
operating systems). These user computers 612, 614, 616, 618
may also have any of a variety of applications, including one
or more development systems, database client and/or server
applications, and Web browser applications. Alternatively,
the user computers 612, 614, 616, 618 may be any other
electronic device, such as a thin-client computer, Internet-
enabled gaming system, and/or personal messaging device,
capable of communicating via a network (e.g., the network
610 described below) and/or displaying and navigating Web
pages or other types of electronic documents. Although the
exemplary system 600 is shown with four user computers,
any number of user computers may be supported.

In most embodiments, the system 600 includes some type
of'network 610. The network may can be any type of network
familiar to those skilled in the art that can support data com-
munications using any of a variety of commercially-available
protocols, including without limitation TCP/IP, SNA, IPX,
AppleTalk, and the like. Merely by way of example, the
network 610 can be a local area network (“LLAN™), such as an
Ethernet network, a Token-Ring network and/or the like; a
wide-area network; a virtual network, including without limi-
tation a virtual private network (“VPN”); the Internet; an
intranet; an extranet; a public switched telephone network
(“PSTN™); an infra-red network; a wireless network (e.g., a
network operating under any of the IEEE 802.11 suite of
protocols, GRPS, GSM, UMTS, EDGE, 2G, 2.5G, 3G, 4G,
Wimax, WiFi, CDMA 2000, WCDMA, the Bluetooth proto-
col known in the art, and/or any other wireless protocol);
and/or any combination of these and/or other networks.

The system may also include one or more server computers
602, 604, 606 which can be general purpose computers, spe-
cialized server computers (including, merely by way of
example, PC servers, UNIX servers, mid-range servers,
mainframe computers rack-mounted servers, etc.), server
farms, server clusters, or any other appropriate arrangement
and/or combination. One or more of the servers (e.g., 606)
may be dedicated to running applications, such as a business
application, a Web server, application server, etc. Such serv-
ers may be used to process requests from user computers 612,
614, 616, 618. The applications can also include any number
of applications for controlling access to resources of the serv-
ers 602, 604, 606.

The Web server can be running an operating system includ-
ing any of those discussed above, as well as any commer-
cially-available server operating systems. The Web server can
also run any of a variety of server applications and/or mid-tier

10

15

20

25

30

35

40

45

50

55

60

65

10

applications, including HTTP servers, FTP servers, CGI serv-
ers, database servers, Java servers, business applications, and
the like. The server(s) also may be one or more computers
which can be capable of executing programs or scripts in
response to the user computers 612, 614, 616, 618. As one
example, a server may execute one or more Web applications.
The Web application may be implemented as one or more
scripts or programs written in any programming language,
such as Java®, C, C# or C++, and/or any scripting language,
such as Perl, Python, or TCL, as well as combinations of any
programming/scripting languages. The server(s) may also
include database servers, including without limitation those
commercially available from Oracle®, Microsoft®,
Sybase®, IBM® and the like, which can process requests
from database clients running on a user computer 612, 614,
616, 618.

The system 600 may also include one or more databases
620. The database(s) 620 may reside in a variety of locations.
By way of example, a database 620 may reside on a storage
medium local to (and/or resident in) one or more of the
computers 602, 604, 606, 612, 614, 616, 618. Alternatively, it
may be remote from any or all of the computers 602, 604, 606,
612, 614, 616, 618, and/or in communication (e.g., via the
network 610) with one or more of these. In a particular set of
embodiments, the database 620 may reside in a storage-area
network (“SAN”) familiar to those skilled in the art. Simi-
larly, any necessary files for performing the functions attrib-
uted to the computers 602, 604, 606, 612, 614, 616, 618 may
be stored locally on the respective computer and/or remotely,
as appropriate. In one set of embodiments, the database 620
may be a relational database, such as Oracle 11g, that is
adapted to store, update, and retrieve data in response to
SQL-formatted commands.

FIG. 7 illustrates an exemplary computer system 700, in
which various embodiments of the present invention may be
implemented. The system 700 may be used to implement any
of'the computer systems described above. The computer sys-
tem 700 is shown comprising hardware elements that may be
electrically coupled via a bus 724. The hardware elements
may include one or more central processing units (CPUs)
702, one or more input devices 704 (e.g., amouse, akeyboard,
etc.), and one or more output devices 706 (e.g., a display
device, a printer, etc.). The computer system 700 may also
include one or more storage devices 708. By way of example,
the storage device(s) 708 can include devices such as disk
drives, optical storage devices, solid-state storage device such
as a random access memory (“RAM”) and/or a read-only
memory (“ROM”), which can be programmable, flash-up-
dateable and/or the like.

The computer system 700 may additionally include a com-
puter-readable storage media reader 712, a communications
system 714 (e.g., a modem, a network card (wireless or
wired), an infra-red communication device, etc.), and work-
ing memory 718, which may include RAM and ROM devices
as described above. In some embodiments, the computer sys-
tem 700 may also include a processing acceleration unit 716,
which can include a digital signal processor DSP, a special-
purpose processor, and/or the like.

The computer-readable storage media reader 712 can fur-
ther be connected to a computer-readable storage medium
710, together (and, optionally, in combination with storage
device(s) 708) comprehensively representing remote, local,
fixed, and/or removable storage devices plus storage media
for temporarily and/or more permanently containing, storing,
transmitting, and retrieving computer-readable information.

US 9,229,700 B2

11

The communications system 714 may permit data to be
exchanged with the network and/or any other computer
described above with respect to the system 700.

The computer system 700 may also comprise software
elements, shown as being currently located within a working
memory 718, including an operating system 720 and/or other
code 722, such as an application program (which may be a
client application, Web browser, mid-tier application,
RDBMS, etc.). It should be appreciated that alternate
embodiments of a computer system 700 may have numerous
variations from that described above. For example, custom-
ized hardware might also be used and/or particular elements
might be implemented in hardware, software (including por-
table software, such as applets), or both. Further, connection
to other computing devices such as network input/output
devices may be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or trans-
mission of information such as computer readable instruc-
tions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, data
signals, data transmissions, or any other medium which can
be used to store or transmit the desired information and which
can be accessed by the computer. Based on the disclosure and
teachings provided herein, a person of ordinary skill in the art
will appreciate other ways and/or methods to implement the
various embodiments.

In the foregoing specification, the invention is described
with reference to specific embodiments thereof, but those
skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above-
described invention may be used individually or jointly. Fur-
ther, the invention can be utilized in any number of environ-
ments and applications beyond those described herein
without departing from the broader spirit and scope of the
specification. The specification and drawings are, accord-
ingly, to be regarded as illustrative rather than restrictive.

What is claimed is:

1. A method comprising:

determining, by an upgrade management system on a com-
puting system, a configuration of an access manager that
executes on the computing system, the configuration
defining a first version of the access manager that pro-
tects access to one or more resources, wherein the con-
figuration includes one or more settings defining func-
tionality of the first version of the access manager, and
wherein the first version of the access manager executes
based on a policy configuration that defines access to the
one or more resources for a plurality of users;

extracting, by the upgrade management system, a set of
policy parameters of the policy configuration for the first
version of the access manager, wherein the set of policy
parameters indicates an authentication scheme for
authenticating a client operated by a user and indicates
an authorization policy for determining authentication
of each of the plurality of users;

extracting, by the upgrade management system, the one or
more settings indicated by the configuration of the first
version of the access manager;

30

40

45

12

adjusting, by the upgrade management system, the
extracted set of policy parameters to an updated set of
policy parameters for an updated policy configuration,
the updated policy configuration defining access to the
one or more resources by a second version of the access
manager for execution on the computing system,
wherein adjusting the extracted set of policy parameters
includes converting the extracted set of policy param-
eters for adjustment into the updated set of policy param-
eters to change from the first version to the second ver-
sion of the access manager;

adjusting, by the upgrade management system, the one or

more extracted settings to one or more updated settings
in an updated configuration for a second version of the
access manager, the updated configuration defining
functionality for the second version to protect access to
the one or more resources;

storing, by the upgrade management system, the updated

set of policy parameters and the one or more updated
settings to an import file for migration from the first
version of the access manager to the second version of
the access manager;

configuring, by the upgrade management system using the

import file, the second version of the access manager for
execution on the computing system based on the updated
configuration; and

configuring, by the upgrade management system using the

import file, the second version of the access manager to
protect access to the one or more resources for a plurality
of users based on the updated set of policy parameters in
the updated policy configuration;

changing execution of the access manager on the comput-

ing system from the first version to the second version
based on configuring the second version of the access
manager according to the updated configuration and the
updated policy configuration.

2. The method of claim 1, wherein the set of policy param-
eters and the one or more settings are represented in a first
format compatible with the first version of the access man-
ager, and wherein the updated set of policy parameters and the
one or more updated settings are represented in a second
format compatible with the second version of the access
manager.

3. The method of claim 1, further comprising:

determining one or more upgrade paths for upgrading the

access manager from the first version to the second
version based at least in part upon identification of at
least one of the first version of the access manager and
the second version, wherein an upgrade path indicates an
upgrade to change from the first version of the access
manager to the second version of the access manager.

4. The method of claim 3, wherein the one or more upgrade
paths are determined dynamically upon receiving an upgrade
request from the user.

5. The method of claim 3, wherein a first upgrade path is
identified from the one or more determined upgrade paths
using at least one parameter, and wherein the at least one
parameter includes an execution speed parameter and a sys-
tem resource usage parameter.

6. The method of claim 5, further comprising:

determining a version specific upgrade program based on

the first upgrade path; and

determining a version specific upgrade program compo-

nent based on the first upgrade path.

7. The method of claim 6, wherein the set of policy param-
eters and the one or more settings are extracted for the first
version of the access manager using at least one of the deter-

US 9,229,700 B2

13

mined version specific upgrade program and the determined
version specific upgrade program component.

8. The method of claim 5, wherein the first upgrade path is
an indirect upgrade path for upgrading the first version of the
access manager to the second version of the access manager,
the indirect upgrade path indicating an upgrade path for
upgrading the first version of the access manager to a third
version of the access manager and an upgrade path for
upgrading the third version of the access manager to the
second version of the access manager.

9. The method of claim 1, wherein converting the extracted
set of policy parameters for adjustment into the updated set of
policy parameters includes merging at least two of policy
parameters into the updated set of policy parameters.

10. The method of claim 1, wherein converting the
extracted set of policy parameters for adjustment into the
updated set of policy parameters includes reducing one or
more policy parameters from the set of policy parameters for
adjustment into the updated set of policy parameters.

11. The method of claim 1, wherein converting the
extracted set of policy parameters for adjustment into the
updated set of policy parameters includes adding a plurality
of policy parameters to the updated set of policy parameters
for adjustment of a policy parameter from the set of policy
parameters.

12. An upgrade management system comprising:

a processor; and

memory coupled to the processor, the memory including

instructions comprising program code executable by the

processor for performing operations comprising:

determining a configuration of an access manager that
executes on a computing system, the configuration
defining a first version of the access manager that
protects access to one or more resources, wherein the
configuration includes one or more settings defining
functionality of the first version of the access man-
ager, and wherein the first version of the access man-
ager executes based on a policy configuration that
defines access to the one or more resources for a
plurality of users;

extracting a set of policy parameters of the policy con-
figuration for the first version of the access manager,
wherein the set of policy parameters indicates an
authentication scheme for authenticating a client
operated by a user and indicates an authorization
policy for determining authentication of each of the
plurality of users;

extracting the one or more settings indicated by the
configuration of the first version of the access man-
ager;

adjusting the extracted set of policy parameters to an
updated set of policy parameters for an updated policy
configuration, the updated policy configuration defin-
ing access to the one or more resources by a second
version of the access manager for execution on the
computing system, wherein adjusting the extracted
set of policy parameters includes converting the
extracted set of policy parameters for adjustment into
the updated set of policy parameters to change from
the first version to the second version of the access
manager;

adjusting the one or more extracted settings to one or
more updated settings in an updated configuration for
a second version of the access manager, the updated
configuration defining functionality for the second
version to protect access to the one or more resources;

10

15

20

40

45

50

65

14

storing the updated set of policy parameters and the one
or more updated settings to an import file for migra-
tion from the first version of the access manager to the
second version of the access manager;

configuring, using the import file, the second version of
the access manager for execution on the computing
system based on the updated configuration;

configuring, using the import file, the second version of
the access manager to protect access to the one or
more resources for a plurality of users based on the
updated set of policy parameters in the updated policy
configuration; and

changing execution of the access manager on the com-
puting system from the first version to the second
version based on configuring the second version of the
access manager according to the updated configura-
tion and the updated policy configuration.

13. The upgrade management system of claim 12, wherein
the operations further comprise:

determining one or more upgrade paths from the first ver-

sion of the access manager to the second version of the
access manager.

14. The upgrade management system of claim 13, wherein
the operations further comprise:

determining a version specific upgrade program compo-

nent for each of the one or more determined upgrade
paths; and

associating the determined version specific upgrade pro-

gram component and a version specific upgrade pro-
gram with a particular upgrade path.
15. The upgrade management system of claim 14, wherein
the set of policy parameters and the one or more settings are
extracted based at least in part upon an association of the
determined version specific upgrade program component and
the version specific upgrade program with the particular
upgrade path.
16. The upgrade management system of claim 14, wherein
the determined version specific upgrade program component
and the version specific upgrade program are represented as
Java® objects.
17. The upgrade management system of claim 16, wherein
a custom Java® class loader is used to load the determined
version specific upgrade program component and the version
specific upgrade program in a memory.
18. A non-transitory machine-readable storage medium
having instructions stored thereon, the instructions compris-
ing program code for operations comprising:
determining, by an upgrade management system on a com-
puting system, a configuration of an access manager that
executes on the computing system, the configuration
defining a first version of the access manager that pro-
tects access to one or more resources, wherein the con-
figuration includes one or more settings defining func-
tionality of the first version of the access manager, and
wherein the first version of the access manager executes
based on a policy configuration that defines access to the
one or more resources for a plurality of users;

extracting, by the upgrade management system, a set of
policy parameters of the policy configuration for the first
version of the access manager, wherein the set of policy
parameters indicates an authentication scheme for
authenticating a client operated by a user and indicates
an authorization policy for determining authentication
of each of the plurality of users;

extracting, by the upgrade management system, the one or

more settings indicated by the configuration of the first
version of the access manager;

US 9,229,700 B2

15

adjusting, by the upgrade management system, the
extracted set of policy parameters to an updated set of
policy parameters for an updated policy configuration,
the updated policy configuration defining access to the
one or more resources by a second version of the access
manager for execution on the computing system,
wherein adjusting the extracted set of policy parameters
includes converting the extracted set of policy param-
eters for adjustment into the updated set of policy param-
eters to change from the first version to the second ver-
sion of the access manager;

adjusting, by the upgrade management system, the one or
more extracted settings to one or more updated settings
in an updated configuration for a second version of the
access manager, the updated configuration defining
functionality for the second version to protect access to
the one or more resources;

storing, by the upgrade management system, the updated
set of policy parameters and the one or more updated

16

settings to an import file for migration from the first
version of the access manager to the second version of
the access manager;

configuring, by the upgrade management system using the
import file, the second version of the access manager for
execution on the computing system based on the updated
configuration;

configuring, by the upgrade management system using the
import file, the second version of the access manager to
protect access to the one or more resources for a plurality
of users based on the updated set of policy parameters in
the updated policy configuration; and

changing execution of the access manager on the comput-
ing system from the first version to the second version
based on configuring the second version of the access
manager according to the updated configuration and the
updated policy configuration.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,229,700 B2 Page 1of1
APPLICATION NO. : 13/749509

DATED : January 5, 2016

INVENTOR(S) : Subramanya ct al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page 2, item (56), column 2, under other publication, line 1, delete “v2r1/” and insert
-- v21l/ --, therefor.

In the Specification

In column &, line 38, delete “FIG. 3™ and insert -- FIG. 3. --, therefor.

Signed and Sealed this
Twentieth Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

